Les 15 groupes d'ordre 24 comme sous-groupes de $GL_6(\mathbb{F}_3)$

JEAN-YVES DEGOS

Résumé. Dans cet article, on améliore le résultat d'un article précédent (voir [6]) en démontrant que les groupes d'ordre 24 peuvent être plongés dans le groupe $GL_6(\mathbb{F}_3)$ des matrices à 6 lignes et 6 colonnes à coefficients dans le corps à 3 éléments. On démontre aussi que le groupe $GL_6(\mathbb{F}_3)$ est borroméen, ce qui fait que théoriquement les générateurs des 15 groupes d'ordre 24 pourraient s'écrire comme des mots sur les 3 générateurs de $GL_6(\mathbb{F}_3)$. Un des mérites de ce travail est, entre autres, de fournir des modèles concrets permettant la manipulation de certains groupes d'ordre 24, qui n'étaient connus qu'abstraitement, comme produits semi-directs.

The 15 *groups of order* 24 *as subgroups of* $GL_6(\mathbb{F}_3)$

ABSTRACT. In this paper, we show that that every groupe of order 24 can be embedded in the group $GL_6(\mathbb{F}_3)$ of matrices with 6 rows and 6 columns with coefficients in the field of 3 elements. We also show the the group $GL_6(\mathbb{F}_3)$ is a Borromean one, so that theoretically the generators of the 15 groups of order 24 could be written as words on the 3 generators of $GL_6(\mathbb{F}_3)$. One of the merits of this work is, among other things, to provide concrete models allowing the manipulation of some groups of order 24, which were known only abstractly as semi-direct products.

1. Introduction

Pour montrer que les 15 groupes d'ordre 24 peuvent être plongés dans $GL_6(\mathbb{F}_3)$, nous allons partir de la classification de ces groupes par générateurs et relations (voir la section 2 ci-après). Nous créons alors pour chacun de ces groupes, le groupe formel correspondant dans Sagemath (voir [8]). Par exemple, pour les numérotés 1, 2, 10, 11, 12, 14, on aura :

```
F.<a,b,c> = FreeGroup()

G00 = F / [a,b,c]

G01 = F / [a^24,b,c]

G02 = F / [a^2, b^12, a*b*a*b^11,c]
```

Mots-clés: Groupes, Corps finis, Classification math.: 00X99.

```
G10 = F / [a^12, b^2, a*b*a*b,c]

G11 = F / [a^12, b^2*a^6, a*b*a*b,c]

G12 = F / [a^4, b^2, c, a*b*a*b*a*b]

G14 = F / [a^3, b^8, c, a*b*a*b^7]
```

Pour chacun de ces groupes formels, on détermine la suite des nombres d'éléments d'ordre 1, 2, 3, 4, 6, 8, 12, 24 (voir tableau de la section 3). Cela se fait au moyen des fonctions suivantes :

```
def orders(g):
    orders_list=[]
    for x in g.list():
        orders_list.append(x.order())
    return orders_list
def orders_numbers(g):
    the_orders=orders(g)
    the_numbers=[]
    for k in [1,2,3,4,6,8,12,24]:
        the_numbers.append(the_orders.\
                               count(k))
    return the_numbers
def list_order(g,n):
    elements=[]
    for x in g.list():
        if x.order()==n:
            elements.append(x)
    return elements
```

Pour chaque groupe, on essaie de déterminer des générateurs possibles. Cela fait, on vérifie que les relations ont bien lieu, que le cardinal est le bon, et à quelle « suite » on a affaire. Pour certains groupes, il est nécessaire de rechercher systématiquement les générateurs, car il n'y a pas d'heuristique.

L'ensemble du code nécessaire peut être téléchargé depuis GitLab (voir [5]).

2. La classification des groupes d'ordre 24

On rappelle dans cette section la classification des groupes d'ordre 24 (voir Tableau 1 page 4) telle qu'elle apparaît dans ([7], pp. 212–213), en la complétant par les présentations par générateurs et relations manquantes dans l'ouvrage. Le nom (colonne N) correspond à une numérotation donnée par l'auteur du présent article. On utilisera les notations suivantes :

Pour $n \ge 2$, C_n désigne le groupe cyclique d'ordre n (engendré par un unique générateur).

Pour $n \ge 2$, \mathcal{D}_n désigne le groupe des isométries du polygone régulier à n côtés; il est d'ordre 2n engendré par un élément r d'ordre n, et un élément t d'ordre 2 satisfaisant $trt^{-1} = r^{-1}$, soit encore rtr = t.

Pour $n \neq 2$, \mathfrak{S}_n désigne le groupe symétrique de degré n des permutations de l'ensemble $\{1, 2, \dots, n\}$ des n premiers entiers consécutifs;

Pour $n \neq 2$, \mathfrak{A}_n désigne le groupe alterné composé des éléments de \mathfrak{S}_n de signature 1.

Pour $m \ge 2$, $Q_{2m} = \langle a, b | a^{2m} = 1, aba = b, b^2 = a^m \rangle$ désigne le groupe des quaternions généralisés, qui est d'ordre 4m.

3. Les 15 modèles de groupes d'ordre 24

On commence par donner un tableau (voir Tableau 2 page 5) qui détaille, pour chaque groupe d'ordre 24, le nombre d'éléments d'ordre *d* avec *d* diviseur de 24.

On donne ensuite pour chaque groupe Γ_i $(1 \le i \le 15)$, un ensemble d'au plus 3 générateurs.

TABLE 1. Classification des groupes d'ordre 24

N	Structure	G	Relations			
Γ_1	C_{24}	1	$a^{24} = 1$			
Γ_2	$C_2 \times C_{12}$	2	$a^2 = 1, b^{12} = 1,$ ab = ba			
Γ_3	$C_2^2 \times C_6$	3	$a^{2} = 1, b^{2} = 1, c^{6} = 1,$ ab = ba, ac = ca, bc = cb			
Γ_4	$\mathcal{D}_6 \times \mathcal{C}_2$	3	$a^6 = 1, b^2 = 1, c^2 = 1,$ aba = b, ac = ca, bc = cb			
Γ_5	$\mathfrak{A}_4 \times C_2$	3	$a^{2} = 1, b^{3} = 1, c^{2} = 1,$ $(ba)^{3} = 1, ac = ca, bc = cb$			
Γ_6	$Q_6 \times C_2$	3	$a^{6} = 1, b^{2} = a^{3}, c^{2} = 1,$ aba = b, ac = ca, cb = bc			
Γ_7	$\mathcal{D}_4 \times \mathcal{C}_3$	3	$a^4 = 1, b^2 = 1, c^3 = 1,$ aba = b, ac = ca, cb = bc			
Γ_8	$Q \times C_3$	3	$a^4 = 1, b^2 = a^2, c^3 = 1,$ bab = a, ac = ca, cb = bc			
Γ9	$\mathfrak{S}_3 \times C_4$	3	$a^{3} = 1, b^{2} = 1, c^{4} = 1,$ aba = b, ac = ca, cb = bc			
Γ_{10}	\mathcal{D}_{12}	2	$a^{12} = 1, b^2 = 1,$ aba = b			
Γ_{11}	Q_{12}	2	$a^{12} = 1, b^2 = a^6,$ aba = b			
Γ_{12}	S ₄	2	$a^4 = 1, b^2 = 1,$ $(ab)^3 = 1$			
Γ_{13}	<i>SL</i> (2, 3)	3	$a^4 = 1, b^2 = a^2, c^3 = 1,$ aba = b, ac = cb, bc = cab			
Γ_{14}	$C_3 \rtimes C_8$	2	$a^3 = 1, b^8 = 1,$ $aba = b$			
Γ ₁₅	$C_3 \rtimes \mathcal{D}_4$	3	$a^{3} = 1, b^{4} = 1, c^{2} = 1$ bcb = c, aba = b, ac = ca			

Proposition 3.1. Le groupe Γ_1 est isomorphe au sous-groupe de $GL_6(\mathbb{F}_3)$ engendré par :

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & -1 & -1 \\ 0 & -1 & -1 & 0 & 0 & 0 \\ -1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & -1 & 0 & 1 \end{bmatrix}.$$

N	O_1	O_2	O_3	O_4	O_6	O_8	O ₁₂	O_{24}
Γ_1	1	1	2	2	2	4	4	8
Γ_2	1	3	2	4	6	0	8	0
Γ_3	1	7	2	0	14	0	0	0
Γ_4	1	15	2	0	6	0	0	0
Γ_5	1	7	8	0	8	0	0	0
Γ_6	1	3	2	12	6	0	0	0
Γ_7	1	5	2	2	10	0	4	0
Γ_8	1	1	2	6	2	0	12	0
Г9	1	7	2	8	2	0	4	0
Γ_{10}	1	13	2	2	2	0	4	0
Γ_{11}	1	1	2	14	2	0	4	0
Γ_{12}	1	9	8	6	0	0	0	0
Γ_{13}	1	1	8	6	8	0	0	0
Γ_{14}	1	1	2	2	2	12	4	0
Γ_{15}	1	9	2	6	6	0	0	0

Table 2. Caractérisation des groupes d'ordre 24

Démonstration. La matrice A_1 est de la forme :

$$\begin{bmatrix} I_2 & 0_2 & M \\ M & I_2 & 0_2 \\ 0_2 & M & I_2 \end{bmatrix},$$

où I_2 est la matrice identité de dimension 2, 0_2 est la matrice nulle de dimension 2, et $M = \begin{bmatrix} 0 & -1 \\ -1 & 1 \end{bmatrix}$ est d'ordre 8, ce qui explique de A_1 soit d'ordre 24, puisque A_1^3 est une matrice diagonale de 3 blocs identiques M^3 . Ainsi A_1 engendre-t-elle le groupe cyclique d'ordre 24, CQFD.

Proposition 3.2. Le groupe Γ_2 est isomorphe au sous-groupe de $GL_6(\mathbb{F}_3)$ engendré par :

$$A_2 = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, B_2 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \end{bmatrix}.$$

Démonstration. Il nous faut trouver un élément A_2 d'ordre 2 et un élément B_2 d'ordre 12 qui commutent. Or les choix de A_2 et B_2 faits dans l'énoncé du théorème conviennent. On en conclut que $\Gamma_2 \simeq \langle A_2, B_2 \rangle$.

Proposition 3.3. Le groupe Γ_3 est isomorphe au sous-groupe de $GL_6(\mathbb{F}_3)$ engendré par :

$$A_3 = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, B_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix},$$

$$C_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 \end{bmatrix}.$$

Démonstration. Les matrices A_3 et B_3 sont d'ordre 2 et commutent. Il est clair qu'elles commutent aussi avec C_3 . Il reste à voir que C_3 est d'ordre 6. Il suffit de regarder le bloc $M = \begin{bmatrix} -1 & -1 \\ 0 & -1 \end{bmatrix}$. La matrice M a pour polynôme caractéristique $X^2 - X + 1$ dans $\mathbb{F}_3[X]$, donc $M^2 = M - I_2$, donc $M^6 = (M - I_2)^3 = M^3 - I_2 = -I_2 - I_2 = I_2$. La matrice C_3 est bien d'ordre 6.

Proposition 3.4. Le groupe Γ_4 est isomorphe au sous-groupe de $GL_6(\mathbb{F}_3)$ engendré par :

$$A_4 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}, \ B_4 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

$$C_4 = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \end{bmatrix}.$$

Démonstration. La matrice C_4 est d'ordre 2 et commute avec A_4 et B_4 , puisqu'elle est diagonale. Il reste à voir que A_4 et B_4 engendrent \mathcal{D}_6 . Or A_4 est bien d'ordre 6 car

$$A_4 = \begin{bmatrix} 0 & R \\ R & 0 \end{bmatrix}$$
 avec $R = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$, et A_4^2 est une matrice diagonale de deux blocs

identiques à R^2 . De plus B_4 est d'ordre 2. Il suffit donc de vérifier que $B_4A_4B_4^{-1} = A_4^{-1}$, c'est-à-dire $A_4B_4A_4 = B_4$, ce qui est facile en faisant des produits par blocs.

Proposition 3.5. Le groupe Γ_5 est isomorphe au sous-groupe de $GL_6(\mathbb{F}_3)$ engendré par :

$$A_{5} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, B_{5} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix},$$

$$C_5 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \end{bmatrix}.$$

Démonstration. La matrice C_5 est d'ordre 2 et commute avec A_5 et B_5 . D'autre part, le groupe engendré par A_5 et B_5 est le même que le sous-groupe de \mathfrak{S}_4 engendré par les permutations de $\sigma = (1, 2, 3)$ et $\tau = (1, 2)(3, 4)$. On sait que c'est \mathfrak{A}_4 , car il contient tous les 3-cycles. Donc $\Gamma_5 \simeq \langle A_5, B_5, C_5 \rangle$.

Proposition 3.6. Le groupe Γ_6 est isomorphe au sous-groupe de $GL_6(\mathbb{F}_3)$ engendré par :

$$A_6 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}, B_6 = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix},$$

$$C_6 = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \end{bmatrix}.$$

Démonstration. La matrice C_6 est d'ordre 2 et commute avec A_6 et B_6 . Il reste à voir que $Q_6 = \langle A_6, B_6 \rangle$. On commence par réaliser le groupe $\mathfrak{S}_4 \times \mathfrak{S}_3$ comme sous-groupe de $GL_6(\mathbb{F}_3)$. Pour cela, on note que \mathfrak{S}_4 est engendré ([3], Définition 2.1, page 213) dans GL(3,3) par (noter que 2 = -1 dans \mathbb{F}_3):

$$R_1 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 2 & 0 \end{bmatrix}, R_2 = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 \\ 1 & 0 & 0 \end{bmatrix}, R_3 = \begin{bmatrix} 0 & 1 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix},$$

et que \mathfrak{S}_3 est engendré dans GL(3,3) par les matrices des transposition (1,2) et (2,3), soit :

$$T_{12} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, T_{23} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

Une fois que le groupe S4xS3 est construit, on recherche des générateurs pour Q_6 grâce aux instructions :

Cela permet de trouver les matrices A_6 et B_6 de la proposition. On en déduit donc que $\Gamma_6 \simeq \langle A_6, B_6, C_6 \rangle \simeq Q_6 \times C_2$ dans $GL_6(\mathbb{F}_3)$.

Proposition 3.7. Le groupe Γ_7 est isomorphe au sous-groupe de $GL_6(\mathbb{F}_3)$ engendré par :

$$A_7 = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \ B_7 = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix},$$

$$C_7 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}.$$

Démonstration. La matrice C_7 est d'ordre 3 comme déjà vu ci-dessus, donc elle engendre

le groupe C_3 . La matrice $R = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 2 & 0 & 0 \end{bmatrix}$ est d'ordre 4, donc A_7 aussi. La matrice B_7 est

d'ordre 2, et en faisant des produits par blocs, on peut vérifier que $\mathcal{D}_4 = \langle A_7, B_7 \rangle$. Par conséquent $\Gamma_7 \simeq \langle A_7, B_7, C_7 \rangle \simeq \mathcal{D}_4 \times C_3$.

Proposition 3.8. Le groupe Γ_8 est isomorphe au sous-groupe de $GL_6(\mathbb{F}_3)$ engendré par :

$$A_8 = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \ B_8 = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix},$$

$$C_8 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}.$$

Démonstration. La matrice C_8 est d'ordre 3 donc engendre C_3 . Il reste à vérifier que $Q = \langle A_8, B_8 \rangle$. Or on peut rechercher un modèle de Q, groupe des quaternions, dans $GL_2(\mathbb{F}_3)$, avec les instructions :

Cela permet de trouver les matrices :

$$a = \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix} \text{ et } b = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}.$$

Cela permet d'en déduire A_8 et B_8 avec la bonne propriété. Donc, $\Gamma_8 \simeq \langle A_8, B_8, C_8 \rangle \simeq Q \times C_3$ dans $GL_6(\mathbb{F}_3)$.

Proposition 3.9. Le groupe Γ_9 est isomorphe au sous-groupe de $GL_6(\mathbb{F}_3)$ engendré par :

$$A_9 = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, B_9 = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix},$$

$$C_9 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 2 & 0 \end{bmatrix}.$$

Démonstration. Les matrices A_9 et B_9 engendrent le même groupe que le 3-cycle (1,2,3) et la transposition (1,2), à savoir \mathfrak{S}_3 . D'autre part, la matrice C_9 est d'ordre 4, donc elle engendre C_4 et commute avec A_9 et B_9 qui est diagonale). Ainsi $\Gamma_9 \simeq \mathfrak{S}_3 \times C_4$. □

Proposition 3.10. Le groupe Γ_{10} est isomorphe au sous-groupe de $GL_6(\mathbb{F}_3)$ engendré par :

Démonstration. Ici, on va recherche \mathcal{D}_{12} comme sous-groupe de S4xS3 déterminé dans la preuve de la Proposition 6, avec les instructions :

```
def rechercheD12():
    for a in list_order(S4xS3,12):
        for b in list_order(S4xS3,2):
        if a*b*a*b^(-1)==S4xS3\
            (identity_matrix(6)):
            print("a=")
            print(a)
            print(b)
            print
            print
            print
```

ce qui permet d'obtenir tout de suite A_{10} et B_{10} . On en conclut que $\Gamma_{10} \simeq \langle A_{10}, B_{10} \rangle \simeq \mathcal{D}_{12}$

Proposition 3.11. Le groupe Γ_{11} est isomorphe au sous-groupe de $GL_6(\mathbb{F}_3)$ engendré par :

$$A_{11} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}, B_{11} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 2 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}.$$

Démonstration. On commence par considérer le sous-groupe H de $GL_6(\mathbb{F}_3)$ engendré par $(A_1)^2$ et la matrice :

$$B = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

C'est un groupe d'ordre 5832 (vérification avec Sagemath, voir [8]). À l'intérieur de ce groupe H, on recherche des générateurs pour Q_{12} au moyen des instructions :

```
def rechercheQ12():
    for a in list_order(H,12):
        for b in list_order(H,12):
        if a*b*a*b^(-1)==\
            H(identity_matrix(6)):
            print("a=")
            print(a)
            print("b=")
            print(b)
            print
            print
            print
```

Cela permet d'obtenir les matrices A_{11} et B_{11} . On en déduit donc que $\Gamma_{11} \simeq \langle A_{11}, B_{11} \rangle \simeq Q_{12}$ dans $GL_6(\mathbb{F}_3)$.

Proposition 3.12. Le groupe Γ_{12} est isomorphe au sous-groupe de $GL_6(\mathbb{F}_3)$ engendré par :

$$A_{12} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}, \ B_{12} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

Démonstration. Par construction, les matrices A_{12} et B_{12} jouent dans $GL_6(\mathbb{F}_3)$ le même rôle que matrices R_1 et T_{12} de ([3], Définition 1.3 p. 212 et Définition 2.1 p. 213) :

$$R_1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \text{ et } T_{12} = R_3 R_2^2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Elles engendrent donc Pul, et on peut vérifier que Pul $\simeq \mathfrak{S}_4$, donc finalement $\Gamma_{12} \simeq \langle A_{12}, B_{12} \rangle \simeq \mathfrak{S}_4$.

Proposition 3.13. Le groupe Γ_{13} est isomorphe au sous-groupe de $GL_6(\mathbb{F}_3)$ engendré par :

$$A_{13} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \end{bmatrix}, B_{13} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 0 & 0 & 2 \end{bmatrix},$$

$$C_{13} = \begin{bmatrix} 2 & 0 & 0 & 2 & 0 & 0 \\ 0 & 2 & 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 0 & 0 & 2 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}.$$

Démonstration. On montre en fait que le groupe Γ_{13} peut se réaliser comme sous-groupe de $GL_2(\mathbb{F}_3)$ au moyen des instructions Sagemath (voir [8]):

```
g=GL(2,3)
order3=list_order(g,3)
order4=list_order(g,4)
order2=list_order(g,2)

for a in order4:
   for b in order4:
    for c in order3:
        if b^2==a^2 and a*b*a==b\
        and a*c==c*b and b*c==c*a*b:
        print 'a=',a,'b=',b,'c=',c
        print
```

qui permettent de déduire les matrices A_{13} , B_{13} et C_{13} de l'énoncé, donc finalement $\Gamma_{13} \simeq \langle A_{13}, B_{13} \rangle$.

Proposition 3.14. Le groupe Γ_{14} est isomorphe au sous-groupe de $GL_6(\mathbb{F}_3)$ engendré par :

$$A_{14} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \ B_{14} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}.$$

Démonstration. On commence par écrire le produit semi-direct $C_3 \rtimes C_8$ comme un groupe de permutations grâce aux instructions :

On obtient : $C_3 \rtimes C_8 \simeq (9, 10, 11)(1, 2, 3, 4, 5, 6, 7, 8)$. Pour construire Γ_{14} il suffit de choisir pour A_{14} la matrice de permutation (4, 5, 6) et pour B_{14} deux blocs constitués d'une matrice d'ordre 8, et de la matrice de permutation (5, 6). Ainsi, $\Gamma_{14} = \langle A_{14}, B_{14} \rangle$. \square

Proposition 3.15. Le groupe Γ_{15} est isomorphe au sous-groupe de $GL_6(\mathbb{F}_3)$ engendré par :

Démonstration. Une discussion avec Alain Debreil (voir [1]) a permis d'obtenir le résultat suivant : si a=(1,2,3), b=(2,3)(4,5,6,7), et c=(4,6), alors $\langle a,b,c\rangle \simeq \Gamma_{15}$ dans \mathfrak{S}_7 . L'idée, pour faire baisser la dimension de 7 à 6, est alors, partant de :

$$A = \begin{bmatrix} 0 & 1 \\ 2 & 2 \end{bmatrix} \in GL_2(\mathbb{F}_3)$$

qui est d'ordre 3, de chercher une matrice B d'ordre 2 de $GL_2(\mathbb{F}_3)$ telles que $\langle A, B \rangle \simeq \mathfrak{S}_3$, ce que l'on peut faire avec les instructions Sagemath (voir [8]) suivantes :

```
A=GL(2,3)(matrix(2,2,[0,1,2,2]))
ordre2=list_order(GL(2,3),2)
for B in ordre2:
    S3=MatrixGroup([A,B])
    if orders_numbers(S3)==[1,3,2,0]:
        print S3
```

Parmi les solutions proposées, on retient :

$$B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \in GL(2,3) .$$

Il est alors clair que les matrices A_{15} , B_{15} et C_{15} jouent dans $GL_6(\mathbb{F}_3)$ le même rôle que a, b et c dans \mathfrak{S}_7 , donc $\Gamma_{15} \simeq \langle A_{15}, B_{15}, C_{15}.$

4. La borroméanité de $GL_6(\mathbb{F}_3)$

Théorème 4.1. Considérons les matrices :

$$A = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{bmatrix}, \ B = \begin{bmatrix} 2 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 2 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}.$$

Alors le groupe $GL_6(\mathbb{F}_3)$ est borroméen (voir [4]), engendré circulairement par les matrices A, B, C et $B = KAK^{-1}, C = KBK^{-1}, A = KCK^{-1}$.

Démonstration. À l'aide de Sagemath (voir [8]), on commence par vérifier que le sous-groupe de $GL_6(\mathbb{F}_3)$ engendré par A, B, C a le même cardinal $GL_6(\mathbb{F}_3)$. On a donc $GL(6,3) = \langle A,B,C \rangle$. On vérifie ensuite que si on remplace A ou B ou C par la matrice unité, on obtient un groupe trivial. Par conséquent le groupe $GL_6(\mathbb{F}_3)$ est borroméen de type I.

Corollaire 4.2. Pour $1 \le i \le 15$, le modèle du groupe Γ_i dans $GL_6(\mathbb{F}_3)$ est engendré par trois mots en A, B, C.

Démonstration. C'est évident.

5. Conclusion et questions ouvertes

Nous avons réussi à trouver un modèle de chacun des 15 groupes d'ordre 24 dans le groupe $GL_6(\mathbb{F}_3)$ Ce dernier est d'ordre 84, 12 961 155 895 296 \times 10¹⁵, alors que le Théorème de Cayley dit qu'on peut les réaliser dans le groupe \mathfrak{S}_{24} , qui est d'ordre plus grand, à savoir : 24! = 62 044 840, 733 239 439 360 \times 10¹⁵. Nous avons donc amélioré le résultat théorique donné par le Théorème de Cayley.

Plusieurs suites à ce travail pourraient être envisagées :

- (1) Écrire chacun des générateurs de Γ_i (pour $1 \le i \le 15$) comme un mot sur les matrices A, B, C de la section précédente.
- (2) Écrire $GL_6(\mathbb{F}_3)$ comme limite inductive des groupes Γ_i (pour $1 \le i \le 15$), avec des morphismes convenables.
- (3) Trouver, pour chaque $1 \le i \le 15$, un polynôme $P_i(X) \in \mathbb{Q}[X]$ irréductible tel que :
 - pour chaque $1 \le i \le 15$, l'extension $\mathbb{Q}[X]/(P_i)$ admet Γ_i comme groupe de Galois sur \mathbb{Q} ;
 - la manière dont se recollent les $(\Gamma_i)_{1 \le i \le n}$ se « lit » sur la famille $(P_i(X))_{1 \le i \le n}$.
- (4) Déterminer est le plus petit ordre d'un groupe $GL_n(\mathbb{F}_p)$ avec $n \ge 2$ et p premier qui contient tous les groupes d'ordre 24.

Références

- [1] J.-Y. Degos A. Debreil and alii, *Produit semi-direct de c3 par d4*, http://www.les-mathematiques.net/phorum/read.php?3,1226283,1226283 (2016).
- [2] A. Debreil, *Groupes finis et treillis de leurs sous-groupes*, Calvage et Mounet, Paris, 2016.
- [3] J.-Y. Degos, *Borroméanité du groupe pulsatif*, Cah. Top. Géo. Diff. Cat. **LIV** (3) (2013), 211–220.
- [4] _____, Linear groups and polynomials over \mathbb{F}_p , Cah. Top. Géo. Diff. Cat. LIV (1) (2013), 56–74.
- [5] ______, *Projet goo24gl63*, https://gitlab.com/jyde/goo24gl63.git (2021).
- [6] _____, Les 15 groupes d'ordre 24 comme sous-groupes de $gl_6(\mathbb{F}_5)$, Annales Mathématiques Blaise Pascal. **TBA** (2022), xxx–yyy.
- [7] D. Joyner, *Adventures in Group Theory*, 2nd ed., The John Hopkins University Press, Baltimore, 2086.
- [8] W. A. Stein et al., *Sage Mathematics Software (Version 9.6)*, The Sage Development Team, 2022, http://www.sagemath.org.

J.-Y. Degos

JEAN-YVES DEGOS Centre statistique de Metz, Insee 1, rue Marconi F-57070 METZ FRANCE jean-yves.degos@insee.fr