Sur la conjecture brunnienne (généralisée)

JEAN-YVES DEGOS

Résumé. Nous démontrons la conjecture B(n,p,P) de [1, Conjecture 3.6 p. 62], que nous renommons ici «conjecture brunnienne», dans les cas où $p \geq 5$ et n n'est pas divisible par p-1. Nous introduisons aussi la «conjecture brunnienne généralisée» B(n,q,P) et nous la démontrons dans les cas où $q \geq 4$ et n n'est pas divisible par q-1. En fin d'article, nous montrons aussi, analytiquement, que la stratégie intrinsèque que nous introduisons ici permet de conclure favorablement quant à la véracité de la conjecture dans une proportion significative des cas (voir Proposition 5.2 et Proposition 5.4).

On the (generalized) Brunnian Conjecture

ABSTRACT. We prove the Conjecture B(n, p, P) of [1, Conjecture 3.6 p. 62], which is renamed here as the "Brunnian Conjecture", in the case where $p \ge 5$ and n is not a multiple of p-1. We also introduce, and prove the "Generalized Brunnian Conjecture" B(n,q,P) and prove it in the cases where $q \ge 4$ and n is not divisible by q-1. At the end of the paper, we also show with through an analytical argument that the intrinsic strategy we introduce here leads to a proof of the conjecture in a significant proportion of cases (see Proposition 5.2 and Proposition 5.4).

1. Introduction

Le but de cet article est de donner une démonstration partielle de la Conjecture B(n, p, P) ([1, Conjecture 3.6 p. 62]). Nous nous référerons désormais à celle-ci sous l'appellation « conjecture brunnienne ». Notre stratégie consiste à utiliser la démonstration donnée par Nick Gill de la Conjecture A(n, p, P) ([1, Conjecture 3.4 p. 62]) dans [3, Theorem 2 p. 230], corrigée par l'article de Joel Brewster Lewis, see ([6, Theorem 7 p. 6 et Correction 3.3 p. 10]).

Notre résultat principal est (voir Théorème 3.6 page 8):

Théorème. Soit p un nombre premier, $n \ge 3$ un entier, et

$$P(X) = X^{n} + a_{n-1}X^{n-1} + \dots + a_{1}X + a_{0} \in \mathbb{F}_{p}[X]$$

Mots-clés: Polynômes primitifs, Corps finis, Groupes linéaires, Conjecture brunnienne. Classification math.: 00X99.

un polynôme primitif de degré n. Notons $C = C_P$ la matrice compagnon de P, c'est-à-dire :

$$C = C_P = \begin{bmatrix} 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & -a_{n-2} \\ 0 & \dots & 0 & 1 & -a_{n-1} \end{bmatrix}.$$

Notons G la matrice compagnon du polynôme $X^n - 1$, et soit :

$$\begin{aligned} G_1 &:= C, \\ G_{k+1} &:= GG_kG^{-1} \ pour \ tout \ 1 \leq k \leq n-1. \end{aligned}$$

Alors, si $p \ge 5$ et n n'est pas divible par p - 1, nous avons :

$$\langle G_1, G_2, \ldots, G_n \rangle = \mathrm{GL}_n(\mathbb{F}_p)$$
.

2. Historique et stratégie

Cette histoire commence avec les travaux de René Guitart sur le groupe (de Klein) d'ordre 168 (défini comme le groupe d'automorphismes de la quartique de Klein), qu'il a été le premier à décrire comme un « objet borroméen » ([4, section 3 p. 148]), qui n'est autre que $GL_3(\mathbb{F}_2)$. Dans [1], nous avons étendu la notion de groupe borroméen introduite par René Guitart en définissant les notions de groupes n-cyclables ([1, Definition 1.1 p. 58]) et de groupes n-brunniens ([1, Definition 1.2 et Definition 1.3 p. 58]. La ci-nommée « Conjecture brunnienne » renvoie à l'énoncé suivant : si p est un nombre premier, et $n \geq 2$ un entier, alors le groupe $GL_n(\mathbb{F}_p)$ peut être engendré par la matrice compagnon d'un polynôme primitif $P(X) \in \mathbb{F}_p[X]$ de degré n, et ses conjuguées successives par G^k pour $1 \leq k \leq n-1$ où G la matrice compagnon du polynôme X^n-1 . Cette conjecture est reliée à une autre : le groupe $GL_n(\mathbb{F}_p)$ peut être engendré par la matrice compagnon d'un polynôme primitif $P(X) \in \mathbb{F}_p[X]$ de degré n, notée C, et la matrice compagnon du polynôme X^n-1 , notée G. Ainsi :

$$GL_n(\mathbb{F}_p) = \langle C, G \rangle.$$

Ensuite, Nick Gill, en utilisant la classification des groupes finis simples, a donné une preuve de notre conjecture (A, n, p), en démontrant l'énoncé plus général suivant ([3, Theorem 2 p. 230]) : si \mathbb{F} est un corps fini q éléments et si f, g sont des polynômes dictincts de $\mathbb{F}[X]$ de degrés n tels que f est primitif, et le terme constant de g est non nul, alors :

$$\langle C_f, C_g \rangle = \mathrm{GL}_n(\mathbb{F}).$$

Par conséquent, nous pouvons déduire du théorème de Nick Gill une méthode simple pour démontrer (certains cas de) la conjecture brunnienne : il suffit de fabriquer une matrice compagnon K (d'un polynôme g de degré n) avec les propriétés suivantes :

-
$$K \in \langle G_1, G_2, \ldots, G_n \rangle$$
;

- $g(0) \neq 0$;

- $K \neq G_1$.

Ainsi, comme $\langle G_1, K \rangle \subset \langle G_1, G_2, \dots, G_n \rangle \subset GL_n(\mathbb{F}_p)$, chaque fois que $\langle G_1, K \rangle = GL_n(\mathbb{F}_p)$, c'est gagné!

Dans cet article, notre principal apport est de construire une telle matrice K de façon $g\acute{e}n\acute{e}rique...$ En effet, notre construction fonctionne chaque fois que $-a_0 \neq 1$ et $(-a_0)^n \neq 1$, ce qui est garanti par les hypothèses $p \geq 5$ et n non divisible par p-1, quand le corps de base est \mathbb{F}_p . De plus, nous devons supposer que $n \geq 3$, comme Joel Brewster Lewis l'a signalé.

3. Énoncés et démonstrations

Définition 3.1. Avec les notations de notre théorème principal, nous faisons l'hypothèse que $n \ge 3$ est un entier, et nous définissons la matrice K par :

$$K := G_n G_{n-1} \cdots G_2 G_1$$
.

Proposition 3.2. Nous avons $K = C(G^{-1}C)^n$.

Démonstration. Nous commençons par démontrer, grâce à un raisonnement par récurrence, le résultat suivant :

$$G_k G_{k-1} \dots G_1 = G^{k-1} C (G^{-1} C)^{k-1}$$
 pour tous $2 \le k \le n$.

En effet, si k = 2, cette égalité est équivalente à :

$$G_2G_1 = G^{2-1}C(G^{-1}C)^{2-1}$$
;

par conséquent, elle est vraie, parce que le membre de droite vaut $GCG^{-1}C = G_2G_1$. Supposons vraie l'hypothèse de récurrence au rang k, et montrons-là au rang k + 1. Nous J.-Y. Degos

avons:

$$G_{k+1}G_kG_{k-1}\cdots G_1 = G_{k+1}\cdot G^{k-1}C(G^{-1}C)^{k-1}$$

$$= G^kCG^{-k}\cdot G^{k-1}C(G^{-1}C)^{k-1}$$

$$= G^k\cdot C\cdot G^{-k}\cdot G^{k-1}C\cdot (G^{-1}C)^{k-1}$$

$$= G^k\cdot C\cdot G^{-1}C\cdot (G^{-1}C)^{k-1}$$

$$= G^k\cdot C\cdot (G^{-1}C)^k.$$

Nous avons alors : $G_nG_{n-1}...G_1 = G^{n-1}C(G^{-1})^{n-1}C$. Nous pouvons conclure que :

$$G_1G_nG_{n-1}\dots G_1 = G_1G^{n-1}C(G^{-1})^{n-1},$$

= $CG^{-1}C(G^{-1})^{n-1},$
= $C(G^{-1}C)^n,$

ce qu'il fallait démontrer.

Proposition 3.3. Notons E_k le k^e vecteur de la base canonique, pour $1 \le k \le n$. Alors :

(1)
$$G^{-1}C.E_k = E_k \text{ pour } 1 \le k \le n-1;$$

(2)
$$G^{-1}C.E_n = -a_0E_n + \sum_{j=0}^{n-1} -a_jE_j$$

c'est-à-dire:

$$G^{-1}C = \begin{bmatrix} 1 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & \dots & 0 & -a_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -a_{n-1} \\ 0 & 0 & \dots & 0 & -a_0 \end{bmatrix}.$$

Démonstration. La première assertion est une conséquence du fait que le produit de la matrice G (respectivement : C) par le vecteur-colonne E_k est égal au vecteur-colonne E_{k+1} pour $1 \le k \le n-1$. Ainsi, $G^{-1}C.E_k = G^{-1}.CE_k = G^{-1}.E_{k+1} = E_k$.

Pour démontrer la seconde assertion, nous procédons comme suit :

$$G^{-1}C.E_n = G^{-1} \cdot \left(\sum_{i=1}^n -a_{i-1}E_i\right)$$

$$= \sum_{i=1}^n -a_{i-1}G^{-1}.E_i$$

$$= \sum_{i=1}^n -a_{i-1} \begin{cases} E_{i-1} & \text{si} & 2 \le i \le n \\ E_n & \text{si} & i = 1 \end{cases}$$

$$= -a_0G^{-1}E_1 + \sum_{i=2}^n -a_{i-1}G^{-1}E_i$$

$$= -a_0E_n + \sum_{i=2}^n -a_{i-1}E_{i-1}$$

$$= -a_0E_n + \sum_{j=1}^n -a_jE_j$$

grâce au changement de variable j = i - 1.

Proposition 3.4. Suppons que $-a_0 \neq 1$. Alors la matrice $G^{-1}C$ peut s'écrire comme $Q^{-1}G^{-1}CQ = D$, où $Q \in GL_n(\mathbb{F}_p)$ et D, matrice diagonale, s'expriment ainsi :

$$Q = \begin{bmatrix} 1 & 0 & \dots & 0 & \frac{a_1}{1+a_0} \\ 0 & 1 & \dots & 0 & \frac{a_2}{1+a_0} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & \frac{a_{n-1}}{1+a_0} \\ 0 & 0 & \dots & 0 & 1 \end{bmatrix} et D = \begin{bmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & -a_0 \end{bmatrix},$$

Nous en déduisons que : $K = G^{n-1}(G^{-1}C)^n = C(QDQ^{-1})^n = CQD^nQ^{-1}$.

Démonstration. Le polynôme caractéristique de la matrice $G^{-1}C$ est $\chi_{G^{-1}C}(X) = (X-1)^{n-1}(X+a_0)$. Par conséquent, les valeurs propres sont 1, d'ordre n-1 et $-a_0$, d'ordre 1. D'après la Propostion 3.3, (1), page 4, nous pouvons en déduire que Q satisfera les égalités $Q.E_k = E_k$ pour $1 \le k \le n-1$. Conséquemment, nous devons trouver un vecteur-colonne V tel que $G^{-1}CV = -a_0V$, comme vecteur propre associé à la valeur propre $-a_0$.

Par conséquent, nous écrivons :

$$V := \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}, \text{ d'où } G^{-1}CV = \begin{pmatrix} v_1 - a_1 v_n \\ v_2 - a_2 v_n \\ \vdots \\ v_{n-1} - a_{n-1} v_n \\ -a_0 v_n \end{pmatrix}, \text{ and}$$

$$-a_0 V = \begin{pmatrix} -a_0 v_1 \\ -a_0 v_2 \\ \vdots \\ -a_0 v_n \end{pmatrix}$$

En résolvant ce système de Cramer en v_1, v_2, \dots, v_n , nous obtenons :

- (1) $v_n \in \mathbb{F}_p$;
- (2) $v_i = \frac{a_i v_n}{1 + a_0}$ pour $1 \le i \le n 1$.

Maintenant, il nous suffit de choisir $v_n = 1$ pour obtenir la matrice précédemment annoncée Q.

Proposition 3.5. Si $-a_0 \neq 1$ et $(-a_0)^n \neq 1$, la matrice

$$K := G_n G_{n-1} \cdots G_2 G_1$$

est une matrice compagnon, distincte de C.

Démonstration. Sous l'action de Q et D, les vecteurs-colonnes E_k pour $1 \le k \le n-1$ sont fixes. Nous avons donc :

$$K.E_k = CQD^nQ^{-1}.E_k$$
$$= C.E_k$$
$$= E_{k+1}.$$

Par conséquent, nous devons évaluer $K.E_n = CQD^nQ^{-1}.E_n$.

Soit $U := Q^{-1}E_n$. Alors $E_n = QU$. Pour trouver la valeur de U, il suffit de résoudre l'équation. Cependant, si

$$Q = \begin{bmatrix} 1 & 0 & \dots & 0 & q_1 \\ 0 & 1 & \dots & 0 & q_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & q_{n-1} \\ 0 & 0 & \dots & 0 & q_n \end{bmatrix} \text{ et } U = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_{n-1} \\ u_n \end{bmatrix},$$

alors

$$QU = \begin{bmatrix} u_1 + q_1 u_n \\ u_2 + q_2 u_n \\ \vdots \\ u_{n-1} + q_{n-1} u_n \\ q_n u_n \end{bmatrix} \text{ est égale à } E_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

ce qui permet d'obtenir : $u_n = \frac{1}{q_n} = 1$ (parce que q_n est une notation pour le coefficient de la rangée n et de la colonne n de Q, lequel vaut 1), et :

$$u_k = -q_k u_n = -q_k = \frac{-a_k}{1 + a_0}$$
.

Ainsi, nous avons:

$$U = \begin{bmatrix} \frac{-a_1}{1+a_0} \\ \frac{-a_2}{1+a_0} \\ \vdots \\ \frac{-a_{n-1}}{1+a_0} \\ 1 \end{bmatrix}.$$

Maintenant, soit $W := D^n U$. Alors:

$$W = \begin{bmatrix} \frac{-a_1}{1+a_0} \\ \frac{-a_2}{1+a_0} \\ \vdots \\ \frac{-a_{n-1}}{1+a_0} \\ (-a_0)^n \end{bmatrix},$$

et $CQD^nU = CQW$. Maintenant, nous avons :

$$QW = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ (-a_0)^n \end{bmatrix},$$

En résumé, nous avons :

$$K.E_n = CQD^nQ^{-1}.E_n$$

$$= CQD^nU$$

$$= CQWW$$

$$= C(-a_0)^nE_n$$

$$= (-a_0)^nCE_n$$

$$= \sum_{i=1}^n -a_{i-1}(-a_0)^nE_i.$$

Par conséquent, la matrice K est une matrice compagnon, distincte de C, parce que nous avons supposé que $(-a_0)^n \neq 1$.

Théorème 3.6 (Résultat principal). Soit $p \ge 5$ un nombre premier. Alors $-a_0 \ne 1$. De plus, si n n'est pas divisible par p-1 alors $(-a_0)^n \ne 1$. Dans ce cas, la conjecture brunnienne B(n, p, P) est vraie, où

$$P(X) = X^{n} + a_{n-1}X^{n-1} + \dots + a_{1}X + a_{0} \in \mathbb{F}_{p}[X]$$

est un polynôme primitif de degré n sur $\mathbb{F}_p[X]$. C'est-à-dire :

$$\langle G_1, G_2, \ldots, G_n \rangle = \operatorname{GL}_n(\mathbb{F}_p)$$
.

Démonstration. Comme le polynôme P(X) est primitif, $(-1)^n a_0$ engendre le groupe multiplicatif \mathbb{F}_p^{\times} , donc si $p \geq 5$, l'égalité $-a_0 = 1$ ne peut pas avoir lieu. En effet, si l'on avait $-a_0 = 1$, on aurait $a_0 = -1$, et alors $(-1)^n a_0 = (-1)^{n+1}$ serait égal à -1 ou 1, qui ne sont jamais des générateurs de \mathbb{F}_p^{\times} lorsque $p \geq 5$.

Si n n'est pas divisible par p-1, supposons que $(-a_0)^n=1$ dans \mathbb{F}_p^\times . Nous pouvons écrire n=(p-1)q+r, où $1\leq r< p-1$ est un entier. Alors $(-a_0)^r=1$, parce que d'après notre hypothèse, $1=(-a_0)^n=(-a_0)^{(p-1)q}(-a_0)^r$ et $(-a_0)^{p-1}=1$ (puisque $-a_0\in\mathbb{F}_p^\times$). Maintenant, il est clair que $(-1)^na_0=(-1)^{r-1}(-a_0)$ a un ordre qui divise r< p-1. C'est une contradiction avec le fait que $(-1)^na_0$ est un générateur de \mathbb{F}_p^\times , dont l'ordre est p-1. Par conséquent, si p n'est pas divisible par p-1, alors $(-a_0)^n\neq 1$. \square

En fait, ce résultat peut être généralisé dans le cas d'un corps de base de cardinal $q = p^r, r \ge 1$. Nous obtenons alors le résultat suivant.

Théorème 3.7 (Résultat principal généralisé). Soit $q = p^r$ une puissance d'un nombre premier, avec $q \ge 4$. Alors $-a_0 \ne 1$. De plus, si n n'est pas divisible par q - 1 alors $(-a_0)^n \ne 1$. Dans ce cas, la Conjecture brunnienne généralisée B(n, q, P) est vraie, où

$$P(X) = X^{n} + a_{n-1}X^{n-1} + \dots + a_{1}X + a_{0} \in \mathbb{F}_{q}[X]$$

est un polynôme primitif de degré n sur $\mathbb{F}_q[X]$. C'est-à-dire :

$$\langle G_1, G_2, \ldots, G_n \rangle = \mathrm{GL}_n(\mathbb{F}_q)$$
.

Démonstration. Nous pouvons définir les mêmes objets que dans le Théorème 3.6 (c'est-à-dire la matrice compagnon $C = C_P$, la matrice compagnon G et $G_1, \ldots G_n$) par rapport qu polynôme primitif P(X). Alors $(-1)^n a_0$ engendre le groupe multiplicatif \mathbb{F}_q^{\times} , donc si $q \geq 4$, l'égalité $-a_0 = 1$ ne peut avoir lieu. En effet, si l'on avait $-a_0 = 1$, on aurait $a_0 = -1$, et $(-1)^n a_0 = (-1)^{n+1}$ serait égal à -1 ou 1, qui ne sont jamais des générateurs de \mathbb{F}_q^{\times} lorsque $q \geq 4$.

Si n n'est pas divisible par q-1, supposons que $(-a_0)^n=1$ in \mathbb{F}_q^{\times} . Nous pouvons écrire n=(q-1)k+s, où $1\leq s< q-1$ est un entier. Alors $(-a_0)^s=1$, à cause de notre hypothèse, $1=(-a_0)^n=(-a_0)^{(q-1)k}(-a_0)^s$ et $(-a_0)^{q-1}=1$ (parce que $-a_0\in\mathbb{F}_q^{\times}$). Maintenant, il est clair que $(-1)^na_0=(-1)^{s-1}(-a_0)$ a un ordre qui divise s< q-1. C'est une contradiction avec le fait que $(-1)^na_0$ est un générateur de \mathbb{F}_q^{\times} , dont l'ordre est q-1. Par conséquent, si n n'est pas divisible par q-1, alors $(-a_0)^n\neq 1$.

4. Remarques complémentaires

Dans [1], nous avions effectué des « vérifications expérimentales », reposant sur une liste de polynômes primitifs établie par Philippe Langevin¹, et nous n'avions pas été capable de conclure quant à la véracité de la conjecture pour certains couples (n, p), à cause d'un manque de puissance de calcul et/ou de la complexité de ces calculs. Grâce à la méthode développée ici, nous pouvons maintenant donner des réponses aux cas laissés en suspens. Nous les résumons dans les tableaux suivants. Si « (False) » est écrit dans la dernière colonne, cela signifie que la conjecture peut être vraie, mais cela n'est pas une conséquence des deux résultats principaux de cet article.

n	p	P(x)	B(n, p, P)
7	5	$x^7 + x^6 + 2$	True
8	5	$x^8 + x^5 + x^3 + 3$	(False)
9	5	$x^9 + x^7 + x^6 + 3$	True
10	5	$x^{10} + x^9 + x^7 + 3$	True
11	5	$x^{11} + x^{10} + 2$	True
12	5	$x^{12} + x^7 + x^4 + 3$	(False)
13	5	$x^{13} + 4x^2 + 3x + 3$	True
14	5	$x^{14} + x^7 + 4x^5 + 4x^4 + 2x^3 + 3x^2 + x + 2$	True
15	5	$x^{15} + 2x^5 + 4x^5 + 3x^3 + 3x^2 + 4x + 3$	True
16	5	$x^{16} + x^7 + 4x^6 + 4x^5 + 4x^4 + 4x^3 + 4x^2 + x + 2$	(False)
17	5	$x^{17} + 3x^2 + 2x + 3$	True
18	5	$x^{18} + x^{12} + x^{11} + x^{10} + x^9 + 2x^8 + 2x^6 + x^5 + 2x^3 + 2x^2 + 2$	True

¹Elle peut être téléchargée ici : https ://langevin.univ-tln.fr/project/apc/primitif.data.

Polynômes primitifs sur \mathbb{F}_7

n	p	P(x)	B(n, p, P)
6	7	$x^6 + x^5 + x^4 + 3$	(False)
7	7	$x^7 + x^5 + 4$	True
8	7	$x^8 + x^7 + 3$	True
9	7	$x^9 + x^8 + x^3 + 2$	True
10	7	$x^{10} + x^9 + x^8 + 3$	True

Polynômes primitifs sur \mathbb{F}_{11}

n	p	P(x)	B(n, p, P)
5	11	$x^5 + x^4 + x^3 + 3$	True
6	11	$x^6 + x^5 + x + 7$	True
7	11	$x^7 + x^6 + 4$	True
8	11	$x^8 + x^7 + x^6 + 7$	True

Polynômes primitifs sur \mathbb{F}_{13}

n	p	P(x)	B(n, p, P)
5	13	$x^5 + x^4 + x^3 + 6$	True
6	13	$x^6 + x^5 + x^3 + 6$	True
7	13	$x^7 + x^4 + 2$	True
8	13	$x^8 + x^7 + x^6 + 11$	True

Polynômes primitifs sur \mathbb{F}_{17}

n	p	P(x)	B(n, p, P)
4	17	$x^4 + x^3 + 5$	True
5	17	$x^5 + x^4 + 5$	True
6	17	$x^6 + x^5 + 3$	True
7	17	$x^7 + x^6 + 7$	True

Polynômes primitifs sur \mathbb{F}_{19}

	,	1	1,
n	p	P(x)	B(n, p, P)
4	19	$x^4 + x^3 + 2$	True
5	19	$x^5 + x^4 + 5$	True
6	19	$x^6 + x^5 + 15$	True
7	19	$x^7 + x^6 + 5$	True

Polynômes primitifs sur \mathbb{F}_{23}

n	p	P(x)	B(n, p, P)
4	23	$x^4 + x^3 + 20$	True
5	23	$x^5 + x^4 + 6$	True
6	23	$x^6 + x^5 + 7$	True

Polynômes primitifs sur \mathbb{F}_{29}

n	p	P(x)	B(n, p, P)
4	29	$x^4 + x^3 + 2$	True
5	29	$x^5 + x^4 + 2$	True
6	29	$x^6 + x^5 + 11$	True

Polynômes primitifs sur \mathbb{F}_{31}

	-	1	
n	p	P(x)	B(n, p, P)
4	31	$x^4 + x^3 + 13$	True
5	31	$x^5 + x^4 + 10$	True
6	31	$x^6 + x^5 + 12$	True

Polynômes primitifs sur \mathbb{F}_{37}

	-	1	
n	p	P(x)	B(n, p, P)
3	37	$x^3 + x^2 + 17$	True
4	37	$x^4 + x^3 + 22$	True
5	37	$x^5 + x^4 + 2$	True

Polynômes primitifs sur \mathbb{F}_{41}

n	p	P(x)	B(n, p, P)
3	41	$x^3 + x^2 + 11$	True
4	41	$x^4 + x^3 + 26$	True
5	41	$x^5 + x^4 + 11$	True

Polynômes primitifs sur \mathbb{F}_{43}

n	p	P(x)	B(n, p, P)
3	43	$x^3 + x^2 + 9$	True
4	43	$x^4 + x + 20$	True
5	43	$x^5 + x^4 + 9$	True

Polynômes primitifs sur \mathbb{F}_{47}

n	p	P(x)	B(n, p, P)
3	47	$x^3 + x^2 + 2$	True
4	47	$x^4 + x^3 + 5$	True
5	47	$x^5 + x^4 + 6$	True

Polynômes primitifs sur \mathbb{F}_{53}

n	p	P(x)	B(n, p, P)
3	53	$x^3 + x^2 + 2$	True
4	53	$x^4 + x^3 + 2$	True
5	53	$x^5 + x^4 + 12$	True

Polynômes primitifs sur F₅₉

	J			
n	p	P(x)	B(n, p, P)	
3	59	$x^3 + x^2 + 9$	True	
4	59	$x^4 + x^3 + 18$	True	
5	59	$x^5 + x^4 + 4$	True	

Polynômes primitifs sur \mathbb{F}_{61}

n	p	P(x)	B(n, p, P)
3	61	$x^3 + x^2 + 6$	True
4	61	$x^4 + x^3 + 17$	True
5	61	$x^5 + x^4 + 55$	True

Polynômes primitifs sur \mathbb{F}_{67}

n	p	P(x)	B(n, p, P)
3	67	$x^3 + x^2 + 6$	True
4	67	$x^4 + x^3 + 12$	True

Polynômes primitifs sur \mathbb{F}_{71}

n	p	P(x)	B(n, p, P)		
3	71	$x^3 + x^2 + 8$	True		
4	71	$x^4 + x^3 + 13$	True		

Polynômes primitifs sur \mathbb{F}_{73}

n	p	P(x)	B(n, p, P)
3	73	$x^3 + x^2 + 5$	True
4	73	$x^4 + x^3 + 33$	True

Polynômes primitifs sur \mathbb{F}_{79}

n	p	P(x)	B(n, p, P)
3	79	$x^3 + x^2 + 2$	True
4	79	$x^4 + x^3 + 7$	True

Polynômes primitifs sur \mathbb{F}_{83}

	n	p	P(x)	B(n, p, P)
ĺ	3	83	$x^3 + x^2 + 11$	True
İ	4	83	$x^4 + x^3 + 24$	True

Polynômes primitifs sur \mathbb{F}_{89}

n	p	P(x)	B(n, p, P)
3	89	$x^3 + x^2 + 6$	True
4	89	$x^4 + x^3 + 14$	True

Polynômes primitifs sur \mathbb{F}_{97}

n	p	P(x)	B(n, p, P)
3	97	$x^3 + x^2 + 5$	True
4	97	$x^4 + x^3 + 15$	True

5. Conclusion

Nous conclurons cet article en donnant des résultats qui permettent de voir que nos résultats couvrent une bonne partie des cas.

Définition 5.1. Pour un entier $N \ge 5$:

- (1) nous noterons $\mathcal{P}(N)$ l'ensemble des nombres premiers p pour lesquels les inégalités suivantes sont satisfaites : $5 \le p \le N$;
- (2) nous noterons Q(N) l'ensemble des nombres primaires q tels qu'il existe un nombre premier $1 \le p \le N$ et un entier $1 \le p \le N$ et un entier $1 \le q \le q$ et un enti

Si $n \ge 3$, $N \ge 5$, et $p \in \mathcal{P}(N)$, nous voudrions évaluer la probabilité que n ne soit pas divisible par p-1, sachant que nous espérons qu'elle soit le plus élevé possible. Le résultat est donné par la proposition suivante.

Proposition 5.2. *Pour* $N \ge 5$, *soit* :

$$\mathcal{E}_N = \{ (p, n) \mid p \in \mathcal{P}(N), 3 \le n \le N \};$$

J.-Y. Degos

$$\mathcal{D}_N = \{ (p, n) \mid p \in \mathcal{P}, 3 \le n \le N, n \in (p - 1)\mathbb{Z} \}.$$

Alors:

(1)
$$\#\mathcal{E}_N = (\pi(N) - 2)(N - 2) \text{ et } \#\mathcal{D}_N = \sum_{p \in \mathcal{P}(N)} \left| \frac{N}{p-1} \right|;$$

$$(2) \ \frac{\#\mathcal{D}_N}{\#\mathcal{E}_N} \le \frac{\sqrt{N}}{N-2} \ et \ \frac{\#\overline{\mathcal{D}}_N}{\#\mathcal{E}_N} \ge 1 - \frac{\sqrt{N}}{N-2}.$$

Démonstration. En effet, le nombre d'éléments dans $\mathcal{P}(N)$ est le nombre $\pi(N)$ de nombres premiers inférieurs à N, exceptés 2 et 3. Par conséquent :

$$\#\mathcal{E}_N = (\pi(N) - 2)(N - 2).$$

Aussi:

$$#\mathcal{D}_{N} = \left\{ (p, k(p-1)) \mid p \in \mathcal{P}(N), \frac{3}{p-1} \le k \le \frac{N}{p-1} \right\},$$
$$= \sum_{p \in \mathcal{P}(N)} \left\lfloor \frac{N}{p-1} \right\rfloor.$$

Alors le premier point est démontré. Maintenant, par récurrence sur $N \ge 5$, nous pouvons démontrer (voir the Lemme 5.3 ci-dessous) que :

$$\#\mathcal{D}(N) \leq \sqrt{N}(\pi(N)-2)$$

.

En divisant par $\#\mathcal{E}(N)$, nous obtenons les deux inégalités du second point.

Lemme 5.3. Soit $p \ge 5$ un nombre premier avec $p \le N$ pour un entier $N \ge 5$. Alors:

$$\sum_{p \in \mathcal{P}(N)} \left\lfloor \frac{N}{p-1} \right\rfloor \le \sum_{p \in P(N)} \sqrt{N}.$$

Démonstration. Étape d'initialisation : si N = 5, alors $\mathcal{P}(N) = \{5\}$. Par conséquent :

$$\sum_{p \in \mathcal{P}(N)} \left\lfloor \frac{N}{p-1} \right\rfloor = \left\lfloor \frac{5}{4} \right\rfloor = 1, 25 \le \sqrt{5} = \sum_{p \in P(N)} \sqrt{N}.$$

Étape de récurrence : nous devons prouver que si la propriété est vraie pour un entier $N \ge 5$, elle est également vraie pour l'entier N + 1. Nous devons pour cela justifier que :

$$\sum_{p \in \mathcal{P}(N+1)} \left\lfloor \frac{N+1}{p-1} \right\rfloor \le \sum_{p \in P(N+1)} \sqrt{N+1}.$$

Soit N + 1 n'est pas premier, soit il l'est.

Commençons par traiter le cas où N+1 n'est pas premier. Alors $\mathcal{P}(N+1)=\mathcal{P}(N)$, et nous obtenons :

$$\begin{split} \sum_{p \in \mathcal{P}(N+1)} \left\lfloor \frac{N+1}{p-1} \right\rfloor &= \sum_{p \in \mathcal{P}(N)} \left\lfloor \frac{N+1}{p-1} \right\rfloor \\ &= \sum_{p \in \mathcal{P}(N)} \left\lfloor \frac{N}{p-1} \right\rfloor \\ &\leq \sum_{p \in \mathcal{P}(N)} \sqrt{N} \text{ (récurrence)} \\ &= \sum_{p \in \mathcal{P}(N+1)} \sqrt{N} \\ &< \sum_{p \in \mathcal{P}(N+1)} \sqrt{N+1}. \end{split}$$

CQFD.

Traitons maintenant le cas où N+1 est premier. Alors $\mathcal{P}(N+1)=\mathcal{P}(N)\cup\{N+1\}$, et nous obtenons :

$$\sum_{p \in \mathcal{P}(N+1)} \left\lfloor \frac{k+1}{p-1} \right\rfloor = \sum_{p \in \mathcal{P}(N+1)} \left\lfloor \frac{k+1}{p-1} \right\rfloor + \left\lfloor \frac{k+1}{k} \right\rfloor.$$

Grâce à une propriété de la partie entière :

$$\left| \frac{k+1}{k} \right| = 1$$
 pour tout entier non nul k ,

Nous pouvons en déduire que :

$$\sum_{p \in \mathcal{P}(N+1)} \left\lfloor \frac{N+1}{p-1} \right\rfloor \le \sum_{p \in \mathcal{P}(N)} \left\lfloor \frac{N}{p-1} \right\rfloor + 1 < \sum_{p \in \mathcal{P}(N)} \sqrt{N} + 1$$

et:

$$\sum_{p\in\mathcal{P}(N)}\sqrt{N}+1\leq\sum_{p\in\mathcal{P}(N+1)}\sqrt{N+1},$$

CQFD.

Proposition 5.4. *Pour* $N \ge 5$, *soit :*

$$\mathcal{E}^*_N = \{ (q, n) \mid q \in Q(N), 3 \le n \le N \};$$

$$\mathcal{D}^*_N = \{ (q, n) \mid q \in Q(N), 3 \le n \le N, n \in (q - 1)\mathbb{Z} \}.$$

Alors:

(1)
$$\#\mathcal{E}^*_N = (\pi(N) - 2)(N - 2) \text{ et } \#\mathcal{D}^*_N = \sum_{q \in Q(N)} \left\lfloor \frac{N}{q-1} \right\rfloor;$$

$$(2) \ \frac{\#\mathcal{D}^*_N}{\#\mathcal{E}^*_N} \le \frac{\sqrt{N}}{N-2} \ et \ \frac{\#\overline{\mathcal{D}^*_N}}{\#\mathcal{E}^*_N} \ge 1 - \frac{\sqrt{N}}{N-2}.$$

Démonstration. La démonstration est quasiment la même.

Ainsi:

$$\lim_{N \to +\infty} \frac{\overline{\mathcal{D}}_N}{\mathcal{E}_N} = 1 \text{ et } \lim_{N \to +\infty} \frac{\overline{\mathcal{D}}^*_N}{\mathcal{E}^*_N} = 1.$$

Si $n \ge 3$ et $p \ge 5$, la conjecture brunnienne B(n, p, P) (respectivement : la conjecture brunienne généralisée B(n, q, P)) est « presque toujours vraie » lorsque $p \ge 5$ et n n'est pas divisible par p-1 (respectivement : lorsque $q=p^r \ge 4$ et n n'est pas divisible par q-1).

En résumé:

- les cas pour lesquels la conjecture brunnienne n'est pas encore établie complètement sont : p = 2, p = 3, $p \ge 5$ et n divisible par p 1;
- les cas pour lesqueles la conjecture brunnienne généralisée n'est pas encore établie complètement sont : q = 2, q = 3, $q \ge 4$ et n divisible par q 1.

Références

- [1] Jean-Yves Degos, Linear groups and primitive polynomial over \mathbb{F}_p , Cah. Top. Géo. Diff. Cat. LIV (2013), no. 1, 286–295.
- [2] ______, On the Brunnian Conjecture, https://arxiv.org/abs/2410.16931 (2024), 1–12.
- [3] Nick Gill, *On a conjecture of Degos*, Cah. Top. Géo. Diff. Cat. **LVII** (2016), no. 3, 229–237.
- [4] René Guitart, *Klein's group as a Borromean Objet*, Cah. Top. Géo. Diff. Cat. L (2009), no. 2, 144–155.
- [5] Philippe Langevin, *Quelques polynômes primitifs*, https://langevin.univ-tln.fr/project/apc/primitif.data.
- [6] Joel Brewster Lewis, $GL_n(\mathbb{F}_q)$ -analogues of some properties of n-cycles in \mathfrak{S}_n , https://arxiv.org/abs/2407.20347 (2024), 1–12.

[7] The Sage Developers, Sagemath, the Sage Mathematics Software System (Version 10.6), 2025, https://www.sagemath.org.

JEAN-YVES DEGOS Direction générale de l'Insee Grand Est Établissement de Metz 5, rue Henry Maret F-57070 METZ FRANCE jean-yves.degos@insee.fr